Sensorkonzepte dank integrierter Lichtwellenleiter aus Glas
In Glas integrierte Lichtleiter haben das Potenzial, die Messqualität von Sensoren für Forschung und Industrie deutlich zu verbessern. Im Projekt „3DGlassGuard“ arbeitet ein Konsortium unter Beteiligung des Fraunhofer IZM unter anderem an einem Sensor für die Dichtemessung von Meerwasser, der einheitlichere Klimamodelle ermöglichen soll. Auch für Leistungselektronik wollen die Forschenden Sensoren mithilfe neuartiger optischer 3D-Mikrostrukturen und KI-Designprozessen in Glas realisieren.
Sensoren stoßen bei elektrischen Messungen zunehmend an ihre Grenzen - vor allem, wenn sie in sensiblen Umgebungen wie in großen Energieparks oder unter Wasser eingesetzt werden, schreibt das Institut. Das Problem bei den aktuellen Sensorkonzepten seien Stromverluste und kostenintensive Herstellungsprozesse.
Einen Lösungsansatz bieten den Angaben nach Sensorkonzepte auf Basis von in Glas integrierten Lichtwellenleitern. Hieran arbeitet ein großes Konsortium aus Industrie und Forschung im BMBF-geförderten Projekt „3DGlassGuard“. Dazu sollen dreidimensional strukturierte Glaslagen in die Leiterplatte integriert werden. Diese Glass-Core-Substrate ermöglichen neue Anwendungen in der Sensorik und Datenübertragung.
Die Forschenden vom Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM entwickeln im Projekt zusammen mit den anderen Partnern neuartige Sensortypen, die für Branchen wie Energie, Infrastruktur, Umwelt‐ und Meeresforschung interessant sind. Bisher übliche Sensorlösungen nutzen faserbasierte oder elektrische Leiter. „3DGlassGuard“ will das mithilfe einer durch Ionenaustausch und Selective Laser Etching (SLE) dreidimensional strukturierten und direkt in die Leiterplatte integrierten Glaslage ändern.
In dem Projekt werden Sensorkonzepte für zwei Anwendungsszenarien entwickelt. In Kooperation mit Siemens realisieren die Fachleute einen optischen Stromsensor für leistungselektronische Anwendungen, wie Strommessungen in High-Power-Electronics. Dieser neue Sensor ist nicht, wie üblich, aus einem Schaltkreis aus optischen Fasern aufgebaut, der einerseits viel Platz auf der Leiterplatte und andererseits eine komplexe Justage benötigt, um korrekt zu funktionieren, sondern aus Lichtwellenleitern, die in einer 3D-Glaslage auf die Leiterplatte integriert werden. Zudem werden bisher auftretende Wechselwirkungen durch die integrierte Glaslage umgangen, da sie galvanisch isoliert ist und die Lichtwellenleiter im Glas eingeschlossen sind.
Diese Lichtwellenleiter zeichnen sich durch geringe Leitungsverluste aus und erlauben gleichzeitig die Führung von Licht mit verschiedenen Wellenlängen und Zuständen, wie beispielsweise einer definierten Polarisation. Dadurch lassen sich viel mehr Informationen als auf rein elektrischem Weg messen und übertragen.
Das Projekt „3DGlassGuard“ läuft im Zeitraum vom 15.05.2024 bis 14.05.2027. Es wird mit insgesamt 4,6 Millionen Euro gefördert. Davon stammen 69,3 Prozent aus Mitteln des Bundesministeriums für Bildung und Forschung aus dem Förderprogramm Quantensysteme mit dem Förderkennzeichen 13N16852.
Am Projekt beteiligt sind die Siemens AG als Projektkoordinator, das Fraunhofer IZM, die Contag AG, die LightFab GmbH, die Sea & Sun Technology GmbH, die Technische Universität Berlin und die Schott AG als assoziierter Partner.