Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
© Fraunhofer IZM
Markt |

Fraunhofer IZM treibt 6G-Technik voran

In der Welt von morgen wird 6G eine immer wichtigere Rolle einnehmen. Neuere Entwicklungen wie das autonome Fahren, die Telemedizin, aber auch die private Nutzung benötigen jedoch immer höhere Raten, um große Datenmengen in Echtzeit zu übermitteln. Dabei helfen soll 6G.

Ziel ist es, 1.000 GB/s zu übertragen und die Latenz im Vergleich zu 5G auf ein Zehntel zu verkürzen. In der aktuellen Entwicklungsphase forscht das Fraunhofer IZM zusammen mit Partnern an einem zuverlässigen Hardware-System für die Mobilfunkkommunikation von morgen. Laut Prognosen sollen 2025 bis zu 175 Zettabytes, also 175 mit 21 Nullen dahinter, zirkulieren. Hinein spielt nicht nur die zunehmend Video-lastige Internetnutzung im privaten Raum, auch Tendenzen der Wirtschaft hin zu Industrie 4.0 und Smart Cities benötigen immer höhere Datenraten. 

Für die Übertragung dieser gigantischen Mengen ist eine neue, zuverlässige Infrastruktur vonnöten – denn die Kanalbreiten der ersten vier Generationen der Mobilfunkkommunikation (1 bis 4G) sind fast vollständig ausgelastet. Schon zur Etablierung der 5. Mobilfunkgeneration wurden deswegen höhere Frequenzen oberhalb der 6 GHz eingerichtet. Doch auch dieser Standard reicht nicht aus, um alle Anforderungen der Zukunftsanwendungen zu erfüllen. Deswegen wird bereits jetzt an 6G geforscht.

Ein Ziel des neuen Standards soll sein, im Bereich von Tbit/s Daten drahtlos zu übermitteln oder eine Echtzeitkommunikation zu ermöglichen. Um dies umzusetzen, werden hohe Bandbreiten benötigt: Solche sind oberhalb von 100 GHz vorhanden. Untersuchungen laufen derzeit unter anderem im so genannten D-Band, also dem Frequenzbereich von 110 GHz bis 170 GHz.

Das Konsortium im BMBF-geförderten Projekt 6GKom hat es sich zur Aufgabe gemacht, frühzeitig miniaturisierte, ultrabreitbandige Module zu entwickeln und somit ein Hardware-Fundament für die Mobilfunkkommunikation von morgen zu errichten. Zugleich werden innovative Testverfahren und -umgebungen simuliert, damit das D-Band-Modul nach Fertigstellung getestet, validiert und optimiert werden kann.

Das Fraunhofer IZM koordiniert das Projekt und ist verantwortlich für die Entwicklung und den Aufbau einer aktiven 6G-Antenne sowie das Design und Packaging des Gesamtmoduls. Der Clou beim Aufbau ist das komplexe Design der Antenne: Um Verluste bei der Übertragung zu vermeiden, müsse der Chip nämlich so nah wie möglich an der Antenne verbaut sein, heißt es in einer Pressemitteilung. Mit diesem Ansatz und bei der starken Miniaturisierung der Module entstünden sehr dichte Strukturen, so dass wiederum eine zuverlässige Wärmeableitung und Signalintegrität gewährleistet werden müssen. Unter Abwägung aller Anforderungen entschied sich das Experten-Team für die Nutzung von Wafer-Level-Prozessen beim Aufbau: Dabei entstehen trotz feinster Strukturen nur sehr geringe Pfadverluste, zudem liegt die Rückseite des Packages frei, so dass an dieser Stelle eine direkte Anbindung zu einem Kühlkörper möglich ist.

Im Vergleich zu alternativen Lösungen – bei denen Antenne und Ansteuerchips als ein einziges Bauelement, sprich beide aus Silizium, hergestellt werden – setzt das 6GKom-Team auf den Aufbau einer Package-integrierten Antenne: Damit löst sich das Antennendesign vom Silizium als Grundmaterial. Die gewonnene Freiheit bei der Materialauswahl ermöglicht eine bessere Performance in Bezug auf die Bandbreite und den Antennengewinn.

In der ersten Phase der technologischen Kreation identifizierten die Forschenden mit Hilfe von Simulationen und der Herstellung von Teststrukturen die Eignung der Grundbausteine des Packages, wie Leitungen, Leitungsübergänge und Antennen für das D-Band. Die Antennen erreichen in der vorgesehenen Integrationsplattform Bandbreiten von circa 10 GHz. Durch die Bündelung mehrerer Kanäle können schließlich die Terabitdatenraten erreicht werden. 

Das Projekt ForMikro - 6GKom wird vom Bundesministerium für Bildung und Forschung mit 2,86 Millionen Euro gefördert. Die Forschungspartner sind neben dem Fraunhofer IZM die TU Berlin, die TU Dresden, die Universität Ulm sowie das Leibniz IHP.


Anzeige
Anzeige
Weitere Nachrichten
2024.04.26 09:38 V22.4.33-2